The slide shows the contents of the EMPLOYEES table or relation. The numbers indicate the following:
1. A single row or table representing all data required for a particular employee. Each row in a table should be identified by a primary key, which allows no duplicate rows. The order of rows is insignificant; specify the row order when the data is retrieved.
2. A column or attribute containing the employee number. The employee number identifies a unique employee in the EMPLOYEES table. In this example, the employee number column is designated as the primary key. A primary key must contain a value, and the value must be unique.
3. A column that is not a key value. A column represents one kind of data in a table; in the example, the salary of all the employees. Column order is insignificant when storing data; specify the column order when the data is retrieved.
4. A column containing the department number, which is also a foreign key. A foreign key is a column that defines how tables relate to each other. A foreign key refers to a primary key or a unique key in the same table or in another table. In the example, DEPARTMENT_ID uniquely identifies a department in the DEPARTMENTS table.
5. A field may have no value in it. This is called a null value. In the EMPLOYEES table, only employees who have a role of sales representative have a value in the COMMISSION_PCT (commission) field.
6. A field can be found at the intersection of a row and a column. There can be only one value in it.
Properties of a Relational Database
In a relational database, you do not specify the access route to the tables, and you do not need to know how the data is arranged physically.
To access the database, you execute a structured query language (SQL) statement, which is the American National Standards Institute (ANSI) standard language for operating relational databases. The language contains a large set of operators for partitioning and combining relations. The database can be modified by using the SQL statements.